Sound

Major Topic and SOL:	Sound
Science SOL	PS.1b,f PS.8a,c

Length of Unit:

4 - 50 minute class periods

Major Understandings:

Students will understand...

- Sound is a vibration that travels through matter.
- All waves exhibit certain characteristics: wavelength, frequency, and amplitude. As wavelength increases, frequency decreases.
- A compression (longitudinal) wave consists of a repeating pattern of compressions and rarefactions.
- Wavelength is measured as the distance from one compression to the next compression or the distance from one rarefaction to the next rarefaction.
- Pitch is caused by changes in frequency.
- Volume is caused by changes in amplitude.

Essential Questions

- How would you describe sound?
- What characteristics do waves, including sound waves, include?
- How would you describe wavelength, frequency, and amplitude?
- How would you describe the relationship between frequency and the sound that is produced?
- How would you describe the relationship between amplitude and sound which is produced?
- What is the relationship between the frequency of a wave, its wavelength, and the sound of the wave?

Student Objectives

Students will be able to

- Accurately measure length in metric units.
- Accurately identify independent and dependent variables.
- Differentiate between qualitative and quantitative data.
- Analyze data and make valid conclusions.
- Use valid research methods to investigate questions.
- Present conclusions in appropriate written form.
- Use models to illustrate and describe the properties of a sound wave.
- Construct and analyze line plots.
- Investigate and understand speed, velocity, and acceleration.

- Identify the wavelength, frequency, speed, amplitude, rarefaction, and compression on a picture/model of a sound wave;
- Differentiate between wavelength, frequency, speed, amplitude, rarefaction, and compression;
- Describe and analyze how frequency, amplitude, and wavelength affect the sound produced.

Bloom's Taxonomy Skills	21 st Century Learning Skills
Creating	Critical Thinking
Evaluating	Problem Solving
Analyzing	Communication
Understanding	Collaboration
Remembering	
Applying	

Assessment Evidence

Performance Tasks

Students will

- Explain what causes sound waves
- Sketch and label wave properties
- Experiment with whistles

Other Evidence

- Class Participation
- Teacher Observations
- Laboratory Assignments/Reports
- Group Work
- Drawings
- **Technology** Computers, Internet Connection, Projector System, Interactive Whiteboard (optional)

Internet Resources:

- <u>http://www.oocities.org/wave032002/longitudinal.htm</u>
- http://physics.tutorvista.com/waves/longitudinal-waves.html
- <u>http://encyclopedia2.thefreedictionary.com/Waves</u>

Supplies/Materials:

- Slinky
- Notebook/Drawing Paper
- Pencil or Pen
- Scissors
- Straws
- Newspaper
- Rulers
- Goggles
- Disinfectant (bleach water or Listerine)

Lesson 1: Making Waves (1-50 minute period)

Engage:

- The teacher will write on the whiteboard (aka a *bell assignment*):
 - What is a wave?
 - What is sound?
- Students will be instructed to answer these questions in their notebook or on paper.
- Then, use the Slinkey's on the table to model a wave and sketch it.
- Teacher will show website to describe <u>compression waves</u>.

Explore:

• Students will use Slinkey's to model compression waves.

Explain:

- Go over the *bell assignment* and share student explanations and models.
- Expand on work to segue into notes.

Note: Teacher may use the additional websites to assist (see Internet Resources).

Elaborate:

- Use the PowerPoint (attached) with the students after passing out the *guided/interactive notes* (attached) with the students.
- Have students record their notes.
- Use an Interactive whiteboard (if possible) to allow sketches to be drawn on slides to enhance presentation.

Evaluate:

- Students will be assessed on the notes and sketches in notebook.
- Provide students with an *Exit slip* (can be also recorded in notes):

• Which wave property causes pitch and which causes volume?

Lesson 2: Drawing for Straws (3-50 periods)

Engage:

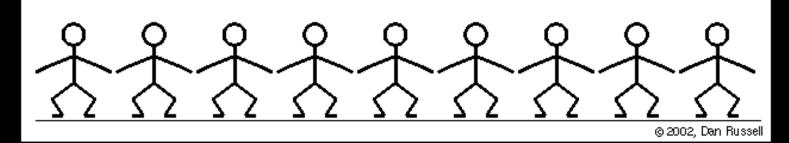
- Construct a whistle as students watch (use Straw Whistle lab handout to assist you in doing this attached).
- Model how to collect data using teacher built straws and data table from Straw Whistle lab (attached)
- Use a different size straw than they will use.

Note: One of the large plastic pixie sticks is good because it can lead to discussions during the wrap up session on how a larger diameter straw affects the sound. Be sure to practice this before doing it in front of the students.

Explore:

- Students will be given the Straw Whistle lab to complete Part 1 (attached).
- Go over lab procedures and how they should be collecting data.

Explain:


- Review how properties affect sound.
- Have students get into small groups and complete Part 2 of the lab.
- Have the students use their *guided notes* to answer the questions and review terms as needed.

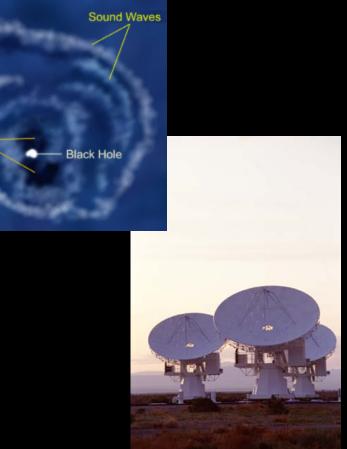
Elaborate:

- Review experiment questions and answers with the students.
- Model writing a conclusion using the HERD organizer (attached).

Evaluate:

- Students will have opportunity to redo answers and reevaluate data based upon class discussion.
- Student will be evaluated through their lab, discussion, and HERD organizer.

Mechanical Waves and Sound

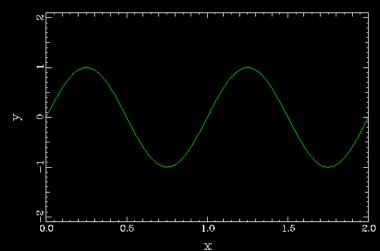

Mechanical Waves & Properties of Mechanical Waves

Review

www.www.www

What are mechanical waves?

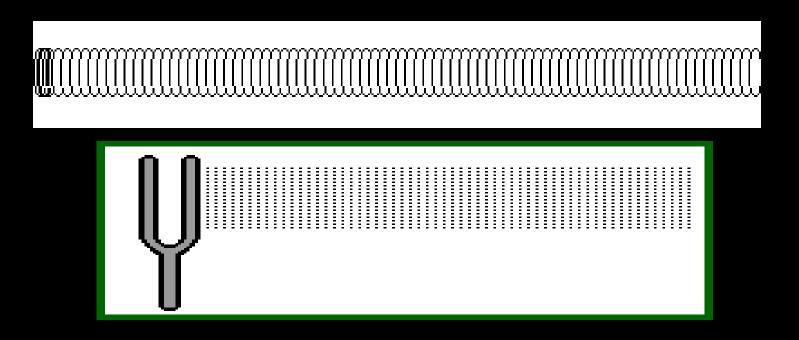
What do you think waves carry?

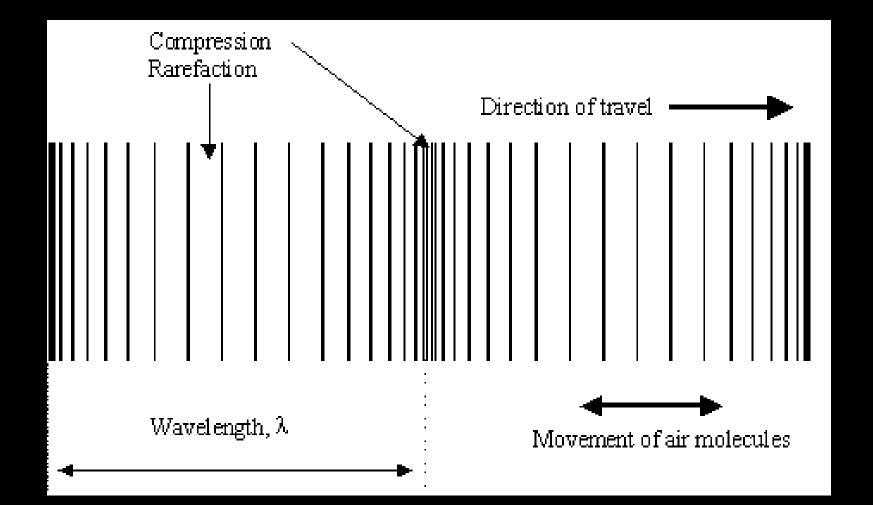

Mechanical Waves

- Mechanical waves are disturbances in matter that carry energy from one place to another.
 - -Usually require matter through which to travel
 - -The matter a wave travels through is called a *medium*.
 - Medium can be a solid, liquid, or gas
 - It's easiest to travel through a solid.

How are mechanical waves created?

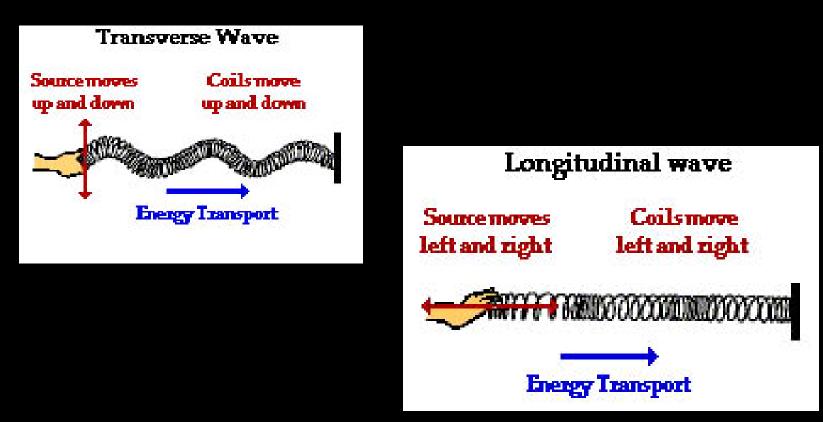
Creation of mechanical waves:


- Need a source of energy!
- That energy causes a vibration to travel through the medium

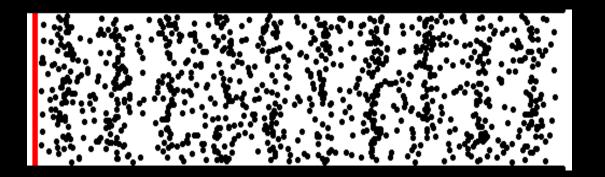

Sound waves

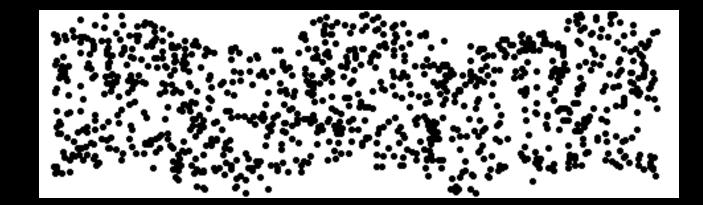
Sound waves are compression waves

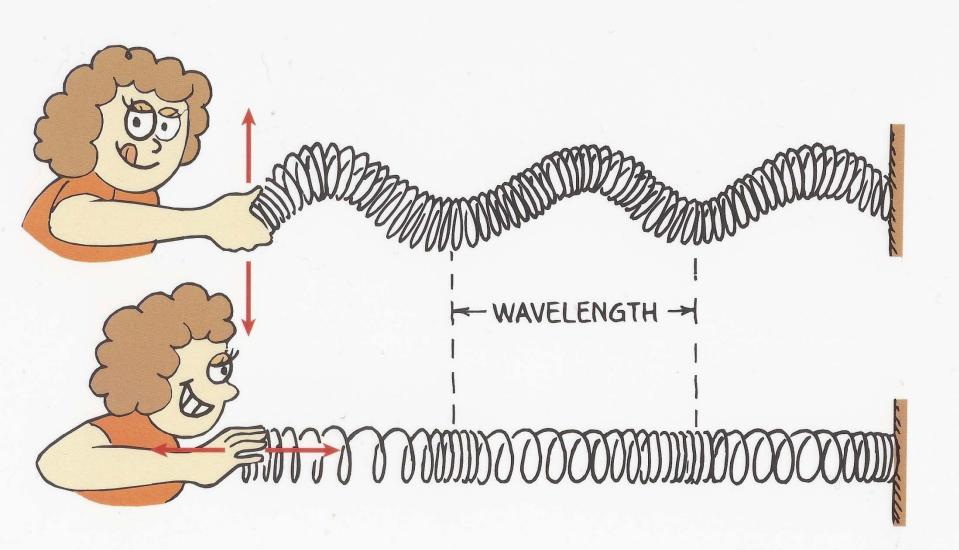
 A wave in which the vibration of the medium is parallel to the direction the wave travels



Parts of a longitudinal wave:

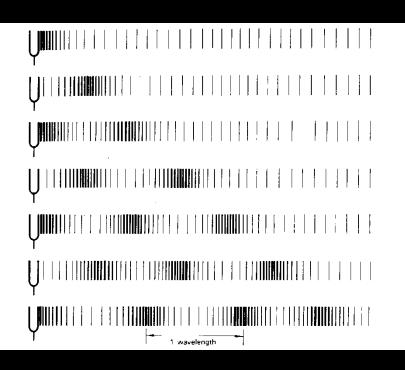

Remember!

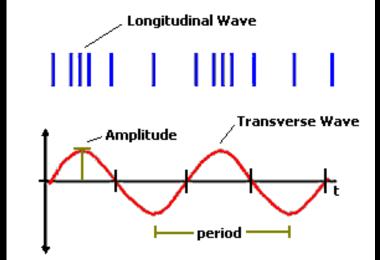

• A wave doesn't move the medium...it's just energy traveling through the medium!



Transverse and Longitudinal Wave

Which is which?





Where is the compression and rarefaction?

Properties of Sound Waves

What type of waves are sound waves?

The following information goes in your interactive notebook

Amplitude

• Amplitude is how big the wave is.

• It is measured by the size/height of the wave.

Amplitude & Volume

- Volume is how loud or soft a wave is.
- Volume indicates the amplitude of the wave.

Bigger amplitude = louder sound

Frequency

- The number of times a wave passes a given point in 1 second.
- Measured in Hertz (Hz)
- Frequency of a sound wave depends on how fast the source of the sound is vibrating.

Frequency & Pitch

- Pitch is one way we hear/describe sound.
- Pitch will be high or low
- High frequency = high pitch.
- Low frequency = low pitch

Wavelength

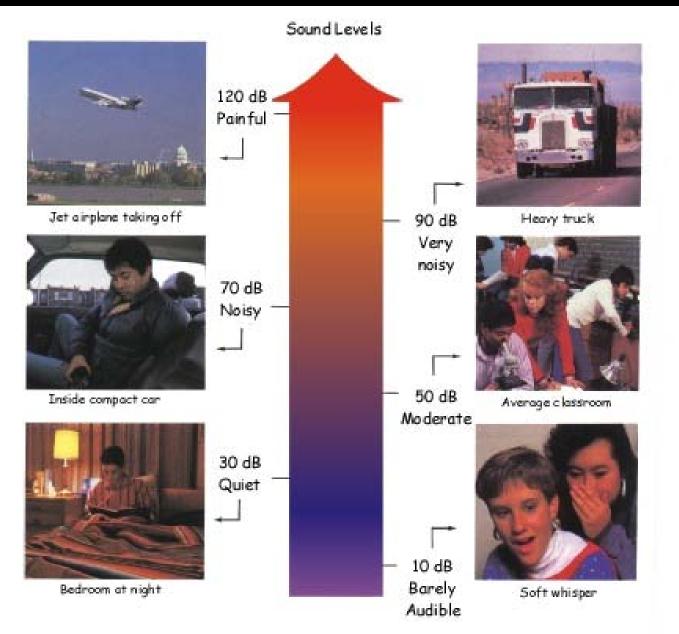
• Is measured from compression to compression or rarefaction to rarefaction.

Wavelength & Frequency

- Inverse relationship
- Long wavelength = low frequency
- Short wavelength = high frequency
- Can you figure out pitch using wavelength?
- Sometimes!

Wavelength & Frequency

- Inverse relationship
- Long wavelength > low frequency > low pitch
- Short wavelength > high frequency > high pitch


Use the slinkey's to model wave behaviors—amplitude, wavelength, frequency

> Sketch each one in your interactive notebook Check before you sketch!!!

Optional

Intensity

- Intensity: the rate at which a wave's energy flows through an area
- Sound intensity depends on
 - Amplitude
 - Distance from source
- Measured in decibels (dB)

Decibel scale showing the intensity level of some familiar sounds.